A “Semi-Lazy” Approach to Probabilistic Path Prediction in Dynamic Environments
نویسندگان
چکیده
Path prediction is useful in a wide range of applications. Most of the existing solutions, however, are based on eager learning methods where models and patterns are extracted from historical trajectories and then used for future prediction. Since such approaches are committed to a set of statistically significant models or patterns, problems can arise in dynamic environments where the underlying models change quickly or where the regions are not covered with statistically significant models or patterns. We propose a “semi-lazy” approach to path prediction that builds prediction models on the fly using dynamically selected reference trajectories. Such an approach has several advantages. First, the target trajectories to be predicted are known before the models are built, which allows us to construct models that are deemed relevant to the target trajectories. Second, unlike the lazy learning approaches, we use sophisticated learning algorithms to derive accurate prediction models with acceptable delay based on a small number of selected reference trajectories. Finally, our approach can be continuously self-correcting since we can dynamically re-construct new models if the predicted movements do not match the actual ones. Our prediction model can construct a probabilistic path whose probability of occurrence is larger than a threshold and which is furthest ahead in term of time. Users can control the confidence of the path prediction by setting a probability threshold. We conducted a comprehensive experimental study on real-world and synthetic datasets to show the effectiveness and efficiency of our approach.
منابع مشابه
R2-D2: a System to Support Probabilistic Path Prediction in Dynamic Environments via "Semi-Lazy" Learning
Path prediction is presently an important area of research with a wide range of applications. However, most of the existing path prediction solutions are based on eager learning methods which commit to a model or a set of patterns extracted from historical trajectories. Such methods do not perform very well in dynamic environments where the objects’ trajectories are affected by many irregular f...
متن کاملEffects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملTowards Real-Time Sensor-Based Path Planning in Highly Dynamic Environments
This paper presents work on sensor-based motion planning in initially unknown dynamic environments. Motion detection and probabilistic motion modeling are combined with a smooth navigation function to perform on-line path planning and replanning in cluttered dynamic environments such as public exhibitions. The SLIP algorithm, an extension of Iterative Closest Point, combines motion detection fr...
متن کاملA smoothing strategy for prm paths: application to 6-axes motoman manipulator
This paper describes the use of the probabilistic motion planning technique SBL “Single-Query Bidirectional Probabilistic Algorithm with Lazy Collision Checking” or in motion planning for robot manipulators. We present a novel strategy to remedy the PRM “Probabilistic Roadmap” paths which are both excessively long and velocity discontinuous. The optimization of the path will be done first throu...
متن کاملApplication of Grey System Theory in Rainfall Estimation
Considering the fact that Iran is situated in an arid and semi-arid region, rainfall prediction for the management of water resources is very important and necessary. Researchers have proposed various prediction methods that have been utilized in such areas as water and meteorology, especially water resources management. The present study aimed at predicting rainfall amounts using Grey Predicti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012